

# Reducing Uncertainty in Top-K Queries

## Davide Martinenghi

Joint work with I. Catallo, E. Ciceri, P. Fraternali, and M. Tagliasacchi Trento, November 21, 2013

#### **Outline**

- Rank aggregation and rank join
- Uncertain scoring
- Representative orderings
- Reducing uncertainty through human workers

#### Ranking queries

- Main idea: focus on the best query answers according to some criterion, without computing the full result
  - A.k.a. "top-k" queries
- Main applications:
  - Combination of user preferences expressed according to various criteria
    - Example: ranking restaurants by combining criteria about culinary preference, driving distance, stars, ...
  - Nearest neighbor problem (e.g., similarity search)
    - Given a database D of n points in some metric space, and a query q in the same space, find the point (or the k points) in D closest to q
  - Search computing
    - "Where can I attend an interesting conference in my field close to a sunny beach?"

#### Ranking queries: example

SELECT h.neighborhood, h.hid, r.rid

FROM HotelsNY h, RestaurantsNY r

WHERE h.neighborhood = r.neighborhood

RANK BY 0.4/h.price + 0.4\*r.rating + 0.2\*r.hasMusic

LIMIT 5

Full Join Results

| Rank Join Res |
|---------------|
|---------------|

| Neighborhood    | Hid  | Rid         |
|-----------------|------|-------------|
| West Village    | H89  | R585        |
| Midtown East    | H248 | R197        |
| Chelsea         | H427 | R572        |
| Midtown East    | H248 | R346        |
| Midtown East    | H597 | R197        |
| Hell's Kitchen  | H662 | R223        |
| Midtown West    | H141 | R276        |
| Upper East Side | H978 | R137        |
| Harlem          | H355 | R49         |
| Tribeca         | H381 | R938        |
| !<br>! • • •    |      | <br>  • • • |

| Neighborhood    | Hid  | Rid  |
|-----------------|------|------|
| East Village    | H346 | R738 |
| Gramercy        | H872 | R822 |
| Midtown West    | H141 | R276 |
| Hell's Kitchen  | H662 | R498 |
| Upper West Side | H51  | R394 |

#### Rank aggregation

[Fagin, PODS 1996]

Rank aggregation is the problem of combining several ranked lists of objects in a robust way to produce a single consensus ranking of the objects

| Candidate | Candidate | Candidate | Candidate | Candidate |
|-----------|-----------|-----------|-----------|-----------|
| 1         | 2         | 4         | 5         | 3         |
| 2         | 4         | 2         | 1         | 5         |
| 3         | 5         | 5         | 3         | 1         |
| 4         | 1         | 3         | 4         | 2         |
| 5         | 3         | 1         | 2         | 4         |

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

- What is the overall ranking?
- Who is the best candidate?

#### Rank aggregation and scores

- Metric approaches are preferred over axiomatic approaches (Arrow's impossibility theorem)
- When scores are opaque, the goal is to find a new ranking R whose total distance to the initial rankings  $R_1, ..., R_n$  is minimized
  - For several metrics, NP-hard to solve exactly
    - E.g., the **Kendall tau distance**  $K(R_1, R_2)$ , defined as the number of exchanges in a bubble sort to convert  $R_1$  to  $R_n$
  - May admit efficient approximations (e.g., median ranking)
- When scores are visible, the consensus ranking is determined by means of an aggregation function

#### Rank aggregation – example with scores

Aggregation function:

Score(cand) = 
$$0.30 s_1 + 0.25 s_2 + 0.20 s_3 + 0.15 s_4 + 0.10 s_5$$

| Cand | s <sub>1</sub> | Cand | S <sub>2</sub> | Cand | S <sub>3</sub> | Cand | S <sub>4</sub> | Cand | <b>S</b> <sub>5</sub> |
|------|----------------|------|----------------|------|----------------|------|----------------|------|-----------------------|
| 1    | .9             | 2    | .65            | 4    | .99            | 5    | .6             | 3    | .8                    |
| 2    | .7             | 1    | .6             | 2    | .97            | 1    | .5             | 1    | .7                    |
| 3    | .5             | 5    | .55            | 5    | .95            | 3    | .4             | 5    | .65                   |
| 4    | .3             | 4    | .5             | 3    | .93            | 4    | .3             | 2    | .63                   |
| 5    | .1             | 3    | .45            | 1    | .91            | 2    | .2             | 4    | .62                   |

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

- What is the overall ranking?
- Who is the best candidate?

#### Reverse top-k queries

[Vlachou et al., ICDE 2010]

Aggregation function:

Score(cand) = 
$$w_1 s_1 + w_2 s_2 + w_3 s_3 + w_4 s_4 + w_5 s_5$$

| Cand | s <sub>1</sub> | Cand | S <sub>2</sub> | Cand | S <sub>3</sub> | Cand | S <sub>4</sub> | Cand | <b>S</b> <sub>5</sub> |
|------|----------------|------|----------------|------|----------------|------|----------------|------|-----------------------|
| 1    | .9             | 2    | .65            | 4    | .99            | 5    | .6             | 3    | .8                    |
| 2    | .7             | 1    | .6             | 2    | .97            | 1    | .5             | 1    | .7                    |
| 3    | .5             | 5    | .55            | 5    | .95            | 3    | .4             | 5    | .65                   |
| 4    | .3             | 4    | .5             | 3    | .93            | 4    | .3             | 2    | .63                   |
| 5    | .1             | 3    | .45            | 1    | .91            | 2    | .2             | 4    | .62                   |

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

- What weights should I convince you to use so that my preferred candidate becomes the best?
  - (point of view of the seller/product manufacturer)

#### Rank aggregation in data-centric contexts

- Traditionally, two ways of accessing data:
  - Sorted access: access, one by one, the next element (together with its score) in a ranked list, starting from top
  - Random access: given an element (id), retrieve its score (position in the ranked list or other associated value)
- Minimizing the accesses when determining the top k items
  - A cost is incurred for each item read from a ranking
  - Can I improve on the current best aggregate score if I read more items?
  - Thresholds are used to ensure that no further item needs to be read

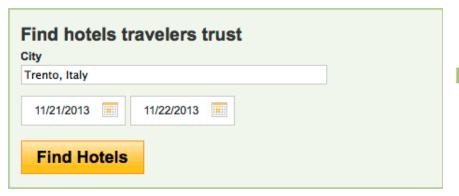
#### Ranking in the real world

[Calì & Martinenghi, ICDE 2008] [Martinenghi & Tagliasacchi, TKDE 2012]

- Almost relational model, with a lot of "quirks"
  - Web interfaces with input and output fields (access patterns)
  - Results are typically ranked

tripAdvisor(Cityi, InDatei, OutDatei, Personsi, Nameo, Popularityo,ranked)

- Other needs: joins (rank join)
- But also: dirty data, deduplication, diversification, uncertainty, incompleteness, recency, paging, access costs...







# #6 of 36 hotels in Trento #6 of 36 hotels in Trento 379 reviews "Awesome hotel" 11/14/2013 "Good place at a right price" 11/13/2013

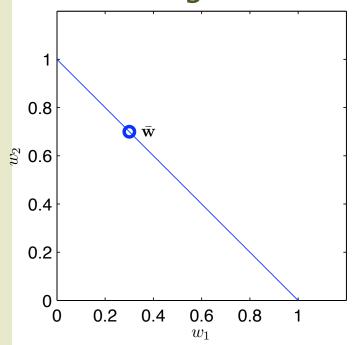
#### **Uncertain scoring**

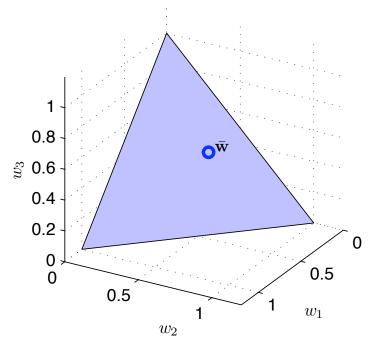
[Soliman & Ilyas, ICDE 2009], [Soliman et al., SIGMOD 2011]

- Users are often unable to precisely specify the scoring function
- Objects may have imprecise scores, e.g., defined over intervals
  - E.g., apartment rent [\$200-\$250]
- Using trial-and-error or machine learning may be tedious and time consuming
- Even when the function is known, it is crucial to analyze the sensitivity of the computed ordering wrt. changes in the function

#### **Uncertain scoring**

- Assumptions:
  - Linear scoring function:  $S = w_1 s_1 + ... + w_n s_n$
  - User-defined weights w<sub>1</sub>,...,w<sub>n</sub> are uncertain, and, w.l.o.g., normalized to sum up to 1
- Each point on the simplex represents a possible scoring function





Top-k query:

**SELECT** R.RestName, R.Street, H.HotelName **FROM** RestaurantsInParis R, HotelsInParis H **WHERE** distance(R.coordinates, H.coordinates)  $\leq 500m$  **RANK BY**  $w_R \cdot$  R.Rating  $+ w_H \cdot$  H.Stars **LIMIT** 5

Results and possible orderings:

| ID | noting | atona | Rank               |
|----|--------|-------|--------------------|
| Ш  | rating | Stars | $W_R + V$          |
| _  | 2      | 6     | $^{\prime\prime}R$ |

Rank By  $w_R$ .rating+ $w_H$ .stars  $w_R+w_H=1$ 

#### Representative ordering

- Both value uncertainty and weight uncertainty determine score uncertainty
  - This induces a partial order over objects
  - we have a space of possible orderings
- We focus on a representative of the space
- An example is the Most Probable Ordering

$$\boldsymbol{\lambda}_{MPO}^* = arg. \max_{\boldsymbol{\lambda} \in \Lambda_K} p(\boldsymbol{\lambda})$$

 Other definitions of representative ordering exist, e.g., the Optimal Rank Aggregation

#### **Example of MPO**

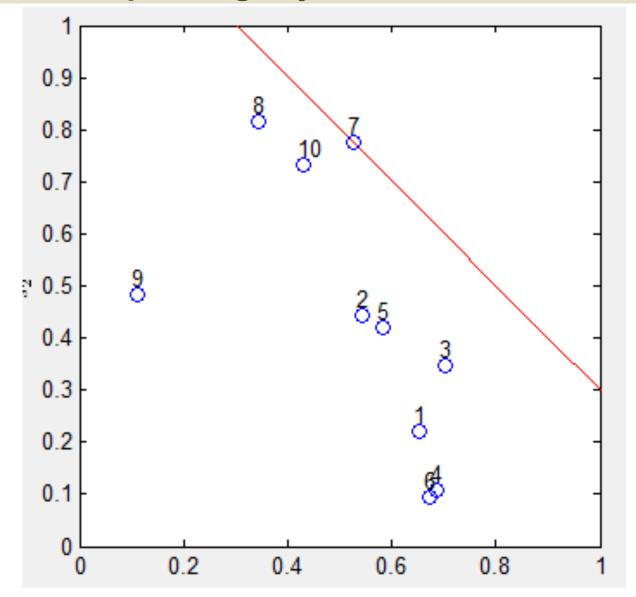
- For K=2, the MPO is  $\langle T_2, T_3 \rangle$ 
  - under the assumption of uniform probability distribution

| ID       | roting.  | atoma | Rank                  | Rank By $w_R$ .rating+ $w_H$ .stars |                               |                      |             |       |  |  |
|----------|----------|-------|-----------------------|-------------------------------------|-------------------------------|----------------------|-------------|-------|--|--|
| ID       | rating   | stars | $W_R+1$               | $w_H = 1$                           |                               |                      |             |       |  |  |
| $\tau_1$ | 2        | 6     |                       |                                     | <b>1</b> 3                    | 3.4                  | <b>3</b> 5  |       |  |  |
| τ,       | 7        | 5     | $\frac{\lambda^1}{}$  | $\frac{\lambda^2}{2}$               | $\lambda^3$                   | $\frac{\lambda^4}{}$ | $\lambda^5$ |       |  |  |
| τ        | 4        | 7     | τ <sub>3</sub>        | τ <sub>3</sub>                      | $\tau_2$                      | $\tau_2$             | $\tau_2$    |       |  |  |
| •3       | T.       | ,     | $	au_1$               | $\tau_2$                            | $\tau_3$                      | $\tau_3$             | $	au_4$     |       |  |  |
| $\tau_4$ | 5        | 2     | <b>T</b> <sub>2</sub> | $\tau_{\scriptscriptstyle 1}$       | $\tau_{\scriptscriptstyle 1}$ | $	au_{\it \Delta}$   | $\tau_3$    |       |  |  |
| Jo       | oin Resi | ults  | $\tau_4$              | $\tau_4$                            | $	au_4$                       | $	au_1$              | $\tau_1$    | 142   |  |  |
|          |          | (     | 0 0.16                | 7 0                                 | .4 0.57                       | 71 0.                | .833 1.0    | $W_R$ |  |  |

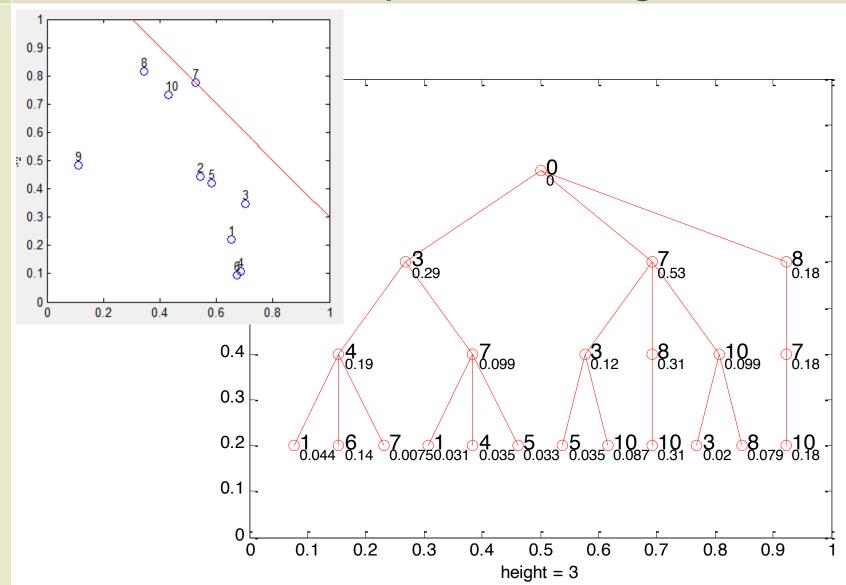
#### Shortcomings of representative orderings

- Complex to compute:
  - exponential in the number of dimensions (weights)
  - in some cases, NP-hard already in 3D
- MPOs may fail to be truly representative:
  - often, only slightly better than the second most probable ordering
  - how stable is the ordering? would it remain the same after a slight perturbation of the weights?

# Points corresponding to join results for d=2



## Construction of tree of possible orderings



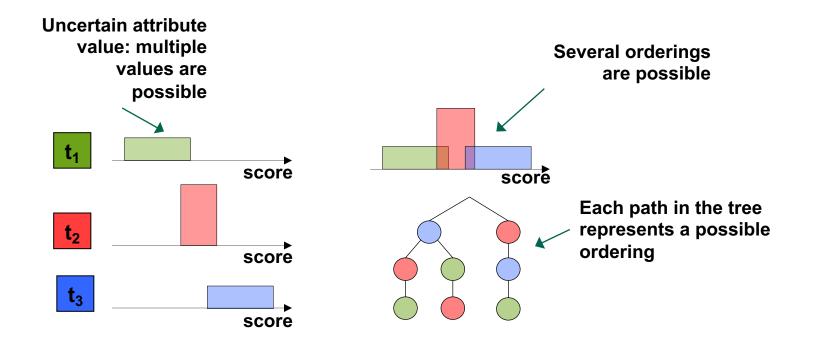
#### **Asking humans**

- Question answering:
  - How to use human workers to reduce the amount of uncertainty?
  - Which questions to pose?
- Task assignment:
  - Once the tasks are defined, which humans to ask?

#### Uncertainty reduction via question answering

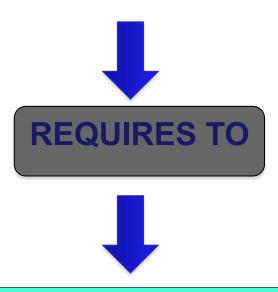
[Li & Deshpande, VLDB 2010]

- When several orderings are possible, the space of possible orderings compatible with the score values can be determined and represented as a tree
- Each node is associated with a probability

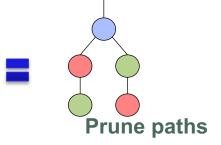


#### Uncertainty reduction via question answering

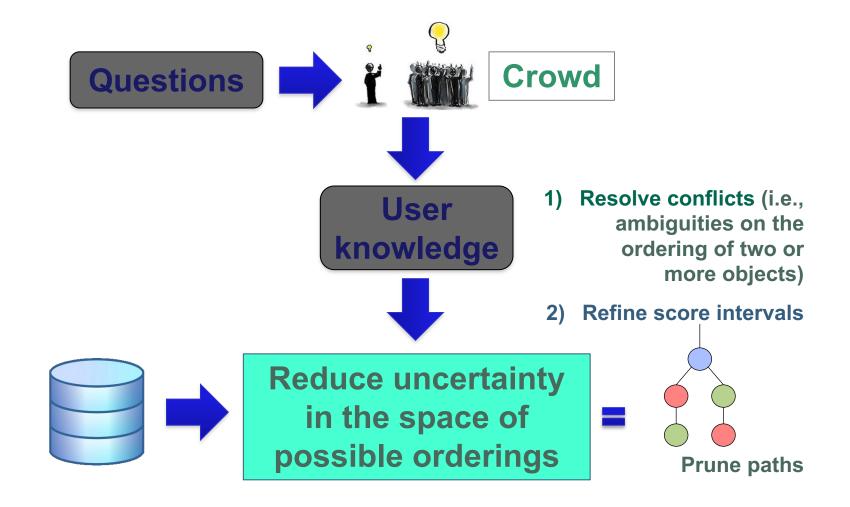
**Determining the best** ordering



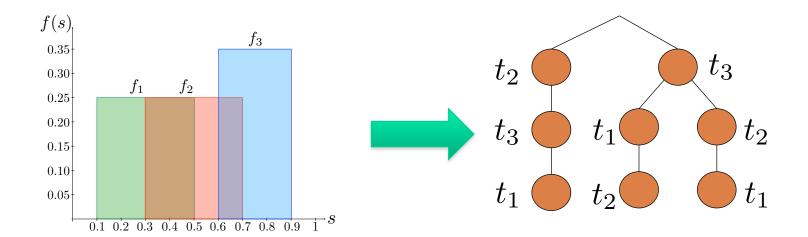
**Reduce uncertainty** in the space of possible orderings



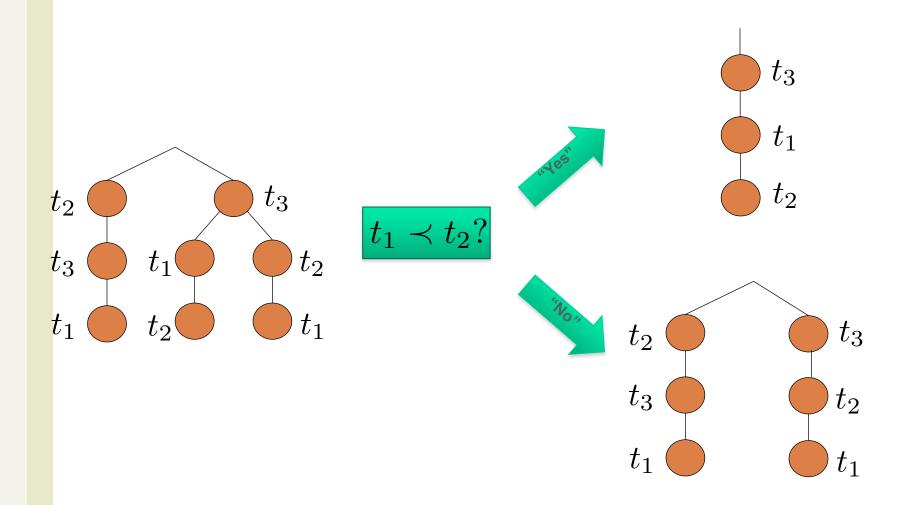
### Solution: crowdsourcing



#### **Showcase: tree construction**



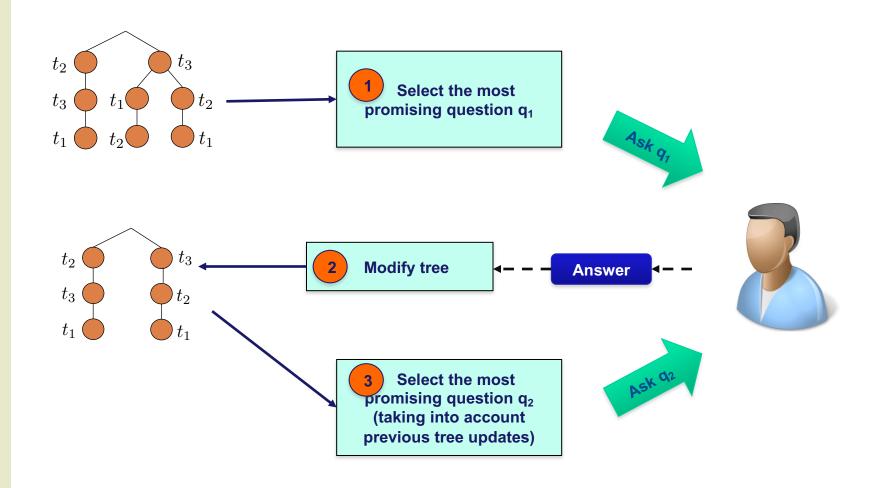
# **Showcase: question answering**



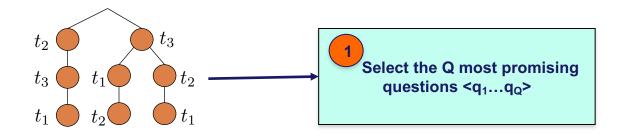
#### Open issue: question types

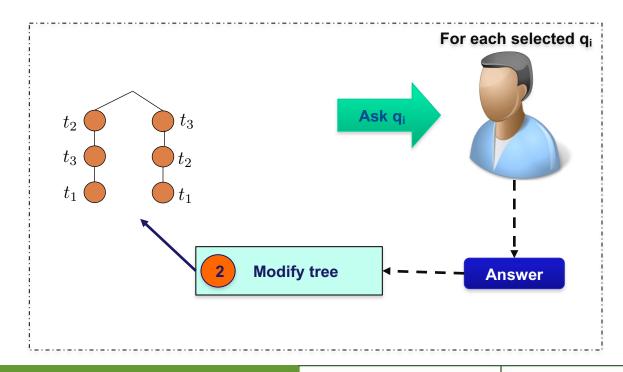
- Questions
  - Define the types of possible questions
  - Define how to measure uncertainty in the space of possible orderings, so as to check its reduction as questions are answered
- Measuring uncertainty
  - Shannon's entropy (or some discounted version thereof)
  - Distance from a representative ordering
- Uncertainty reduction
  - Devise the optimal set/sequence of Q questions that can be posed to users

# First solution: Online approach



## Second solution: Offline approach





# Comparison

|      | Online Approach                                                    | Offline approach                                                                                                                                |
|------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| PROS | Optimized with respect to the actual system state                  | Fast user interaction (questions are chosen before interacting with the user)                                                                   |
| CONS | Slow user interaction<br>(questions are evaluated<br>at each step) | Questions are chosen according to the initial system state (+some clues about the future gains), not according to the system state at each step |

#### **Crowdsourcing marketplaces**

**Crowdsourcing marketplaces:** Internet marketplaces that enable requesters to hire crowd workers to perform tasks





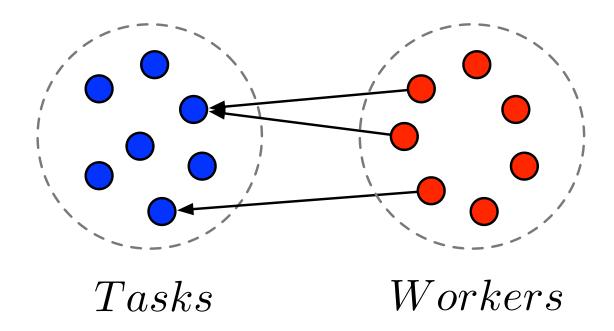
#### **Task assignment: Motivations**

[Raykar et al., J. of Machine Learning Research 2010]

- It is often the case that a worker does not have the appropriate knowledge for annotating all the data, even for a particular domain
- Each worker is characterized by different parameters we should take into consideration
- Examples:
  - Expertise
  - Geocultural information
  - Past work history
- **Problem:** How to associate the most suitable task with the most appropriate worker(s)?

#### **Task assignment: Definition**

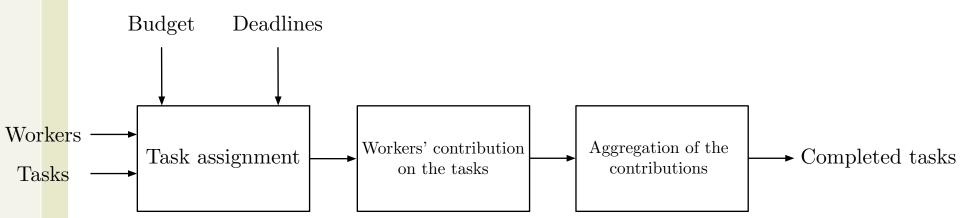
- **Task assignment:** identify the best assignment configuration between workers and tasks, given an upper bound on the *number of assignments or a delay constraint* (i.e., who should work on what?)
- Expressed by means of a bipartite assignment graph
- Constrained maximization problem (maximize assignment quality over all feasible task-annotator assignments)



#### **Objectives and parameters**

- Parameters of interest:
  - Worker model: accuracy (probability of correctly solving the task), fatigue decay, cost, correlation
  - Task model: uncertainty
- Optimal allocation
  - **Possible objectives:** 
    - Achieving maximum quality given a target budget
    - Ensuring that tasks finish before a target deadline

# **Execution pipeline of a task assignment policy**



#### **Experimental assessment**

- Parameters of interest:
  - Tasks' quality and completion rate w.r.t. to workers' accuracy distributions
  - Optimal budget B\* w.r.t. expected number of workers
- Experimental assessment:
  - On publicly available data sets (e.g., UCI repository)
  - On real crowds (e.g., MicroTask)







#### **Goals:**

- Advance the architecture of **multimedia search**
- Exploit the *human* contribution in multimedia search
- Use *open-source* components provided by the community
- Start up a **search business ecosystem**
- http://www.cubrikproject. eu

























DI MILANO







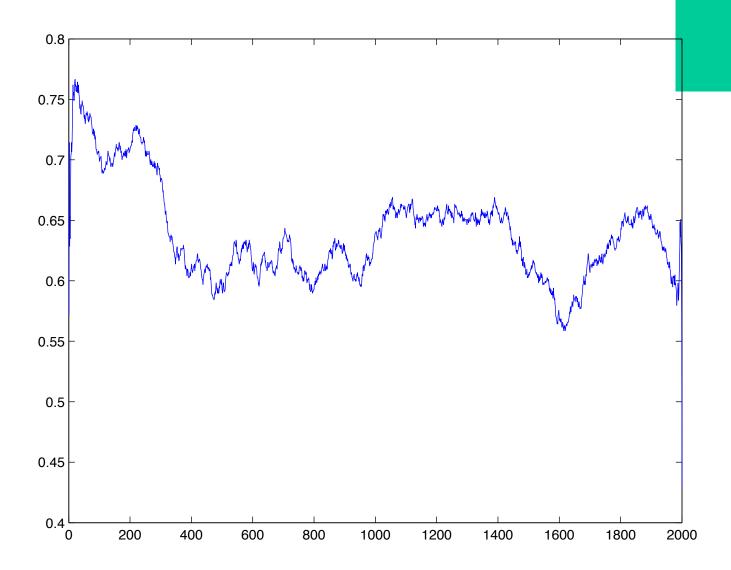




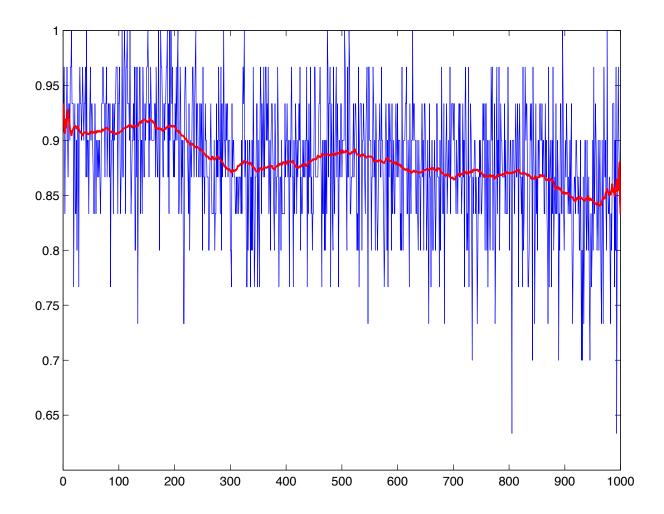




# Fatigue: accuracy over time



# Fatigue: accuracy with a more rewarding model



#### Main References

#### **Core contributions**

- Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi: Crowdsourcing for Top-K Query Processing over Uncertain Data. IEEE Trans. Knowl. Data Eng. 28(1): 41-53 (2016)
- Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi: Humans Fighting Uncertainty: Crowdsourcing for Top-K Ouery Processing, SEBD 2016: 78-85
- Ilio Catallo, Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi: Top-k diversity gueries over bounded regions. ACM Trans. Database Syst. 38(2): 10 (2013)
- Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi: Top-k bounded diversification. SIGMOD Conference 2012: 421-432
- Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi: Efficient Diversification of Top-k Oueries over Bounded Regions, SEBD 2012: 139-146

#### **Crowdsourcing applications**

- Carlo Bernaschina, Ilio Catallo, Piero Fraternali, Davide Martinenghi: On the Role of Task Design in Crowdsourcing Campaigns. HCOMP 2015: 4-5
- Eleonora Ciceri, Ilio Catallo, Davide Martinenghi, Piero Fraternali: When Food Matters: Identifying Food-related Events on Twitter. KDWeb 2015: 65-76
- Carlo Bernaschina, Ilio Catallo, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi: Champagne: A Web Tool for the Execution of Crowdsourcing Campaigns. WWW (Companion Volume) 2015: 171-174
- Carlo Bernaschina, Piero Fraternali, Luca Galli, Davide Martinenghi, Marco Tagliasacchi: Robust aggregation of GWAP tracks for local image annotation. ICMR 2014: 403
- Babak Loni et al.: Fashion-focused creative commons social dataset. MMSys 2013: 72-77

#### **Main References**

#### More crowdsourcing applications

- Luca Galli, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi, Jasminko Novak: A Draw-and-Guess Game to Segment Images. SocialCom/PASSAT 2012: 914-917
- Alessandro Bozzon et al.: A Framework for Crowdsourced Multimedia Processing and Querying. CrowdSearch 2012: 42-47
- Piero Fraternali et al: The CUBRIK project: human-enhanced time-aware multimedia search. WWW (Companion Volume) 2012: 259-262